2026 PhD Proposal in FRANCE: Pulsefront and wavefront shaping of ultrafast laser pulses for micro-nanostructuring

Dr. Cyril Mauclair - LPhiA - University of Angers
October 17, 2025

Background and Objectives

Microstructuring of materials can drastically change the local physical properties, yielding, e.g., self-cleaning surfaces, anti-bacterial functions, cell differentiation, friction reduction, bulk optical guiding, and many other possibilities [1, 2, 3]. Ultrafast laser pulses offer high precision, low thermal side effects, and greater sustainability (no chemicals involved).

Several developments have enhanced the capabilities of ultrafast lasers, like spatial beam shaping and temporal pulse shaping, increasing machining throughput and precision (see Fig. 1).

The aim of this PhD proposal is to develop and manipulate the **next generation of ultrafast light shaping tools** and monitor their effect on material microstructuring. Pulse front modulation has recently been shown to yield flying foci traveling at superluminal speeds, overcoming plasma formation in gas [4, 5]. This PhD will explore advanced light manipulation tools (wave and/or pulse front modulation) for material structuring, aiming to reveal **new and efficient light coupling phenomena** and material responses.

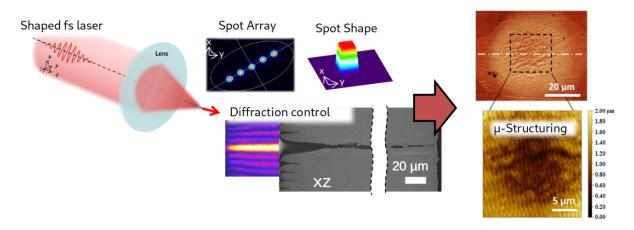
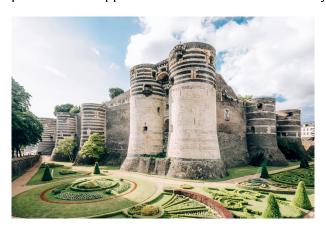


Figure 1: Background of the PhD proposal, advanced beam shaping of femtosecond laser pulses for material structuring at the micrometric level and below using non-diffracting beams [6] and dynamic pulse energy control [7]

Candidate Profile


The successful candidate must possess a Master's degree in Physics/Photonics with a strong background and motivation in light-matter interaction. Prior projects or studies involving ultrafast laser pulses and/or light wavefront modulation would be highly valued, as would strong teamwork skills, communication abilities, and the capacity to conduct experiments and bibliographic searches independently. The PhD work will lead to several dissemination opportunities, both orally at international conferences and through scientific publications.

Team Expertise

The PhD will take place at LPhiA (Laboratoire de Photonique d'Angers, Université d'Angers, FRANCE). The team possesses extensive expertise in femtosecond laser control, including beam shaping and wavelength manipulation across the visible to infrared spectrum. We have successfully developed techniques for precise laser interactions with various materials, providing a solid foundation for this project. The project leader has conducted pioneering research in surface structuring down to the submicrometric level, drilling, and cutting of various materials using advanced beam shaping techniques (full bibliography available via the QR code below).

Scholarship Details and Environment

France Excellence Eiffel scholarship holders receive a monthly stipend of €1,800, along with benefits such as international transportation, national transportation, health insurance, housing assistance, cultural activities, and more. To undertake the PhD, the Eiffel scholarship must be obtained, with Campus France's application deadline set for January 10, 2024.¹

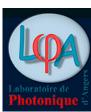
Angers, located in the scenic Loire Valley, is just 90 minutes from Paris by high-speed train and near the Atlantic Ocean. Known for its rich heritage and high quality of life, the city combines historic charm with a vibrant university environment, offering top-tier research facilities and a supportive academic community. Studying in Angers provides an ideal blend of French culture and a dynamic research setting for international PhD candidates.

 $^{^1}Full$ details can be found at https://www.campusfrance.org/en/the-france-excellence-eiffel-scholarship-program or using the QR code below

Contact

Email: cyril.mauclair@univ-angers.fr

Phone: +33(0)6 88 29 00 30


References

- [1] C. Mauclair, G. Cheng, N. Huot, E. Audouard, A. Rosenfeld, I. V. Hertel, and R. Stoian. Dynamic ultrafast laser spatial tailoring for parallel micromachining of photonic devices in transparent materials. *Opt. Express*, 17(5):3531–3542, 2009.
- [2] Virginie Dumas, Alain Guignandon, Laurence Vico, Cyril Mauclair, Ximena Zapata, Marie Thérèse Linossier, Wafa Bouleftour, Julien Granier, Sylvie Peyroche, Jean-Claude Dumas, Hassan Zahouani, and Aline Rattner. Femtosecond laser nano/micro patterning of titanium influences mesenchymal stem cell adhesion and commitment. *Biomedical Materials*, 10(5):055002, 2015.
- [3] D. Saint-Pierre, J. Granier, G. Egaud, E. Baubeau, and C. Mauclair. Fast Uniform Micro Structuring of DLC Surfaces Using Multiple Ultrashort Laser Spots through Spatial Beam Shaping. *Physics Procedia*, 83(Supplement C):1178–1183, January 2016.
- [4] A. Sainte-Marie, O. Gobert, and F. Quéré. Controlling the velocity of ultrashort light pulses in vacuum through spatio-temporal couplings. *Optica*, 4(10):1298–1304, October 2017. Publisher: Optica Publishing Group.
- [5] D. H. Froula, J. P. Palastro, D. Turnbull, A. Davies, L. Nguyen, A. Howard, D. Ramsey, P. Franke, S.-W. Bahk, I. A. Begishev, R. Boni, J. Bromage, S. Bucht, R. K. Follett, D. Haberberger, G. W. Jenkins, J. Katz, T. J. Kessler, J. L. Shaw, and J. Vieira. Flying focus: Spatial and temporal control of intensity for laser-based applications. *Physics of Plasmas*, 26(3):032109, March 2019.
- [6] Huu Dat Nguyen, Enrique Moreno, Anton Rudenko, Nicolas Faure, Xxx Sedao, Cyril Mauclair, Jean-Philippe Colombier, and Razvan Stoian. Super-efficient drilling of metals with ultrafast non diffractive laser beams. *Scientific Reports*, 12(1):1–13, 2022. Publisher: Nature Publishing Group.
- [7] Luca Leggio, Yoan Di Maio, Alina Pascale-Hamri, Gregory Egaud, Stephanie Reynaud, Xxx Sedao, and Cyril Mauclair. Ultrafast Laser Patterning of Metals Commonly Used in Medical Industry: Surface Roughness Control with Energy Gradient Pulse Sequences. *Micromachines*, 14(2):251, February 2023. Number: 2 Publisher: Multidisciplinary Digital Publishing Institute.

