Lunes 3 de JUNIO 2024 10:30 h

Sala de Grados Facultad de Ciencias

Quantum materials engineering with light: making Matter and Photons to cooperate

Ángel Rubio

Max Planck, Hamburg Flatiron Institute, USA

One of the principal challenges in computational physics is to formulate an accurate yet computationally viable theory that can address non-equilibrium light-driven phenomena in molecules and quantum materials. Additionally, there is a need to simulate spatially and temporally resolved spectroscopies, ultrafast events, and newly emerging states of matter. In pursuit of this goal, TDDFT has emerged as the cutting-edge ab initio theoretical framework, enabling reliable and precise simulations of light-induced alterations in the physical and chemical characteristics of intricate systems. In this context, I will also introduce the recently developed framework of Quantum Electrodynamics Density-Functional This framework offers a first-principles approach to predict, Formalism (QEDFT). characterize, and manipulate the spontaneous emergence of ordered phases in strongly interacting light-matter hybrids, referred to as polaritons These phases manifest both as ground states, resulting in novel states of matter, as well as metastable states. Noteworthy examples include photon-mediated superconductivity, cavity fractional quantum Hall physics, and optically driven topological phenomena in low dimensions. This exploration brings to light a burgeoning field, which we term "Cavity Materials Engineering" or the science of strongly correlated electron-photon interactions. We will conclude with the great challenges ahead in this captivating field of research.

Universidad Zaragoza

