Conferencia del ICMA: “Quantum size-effects in atomic chains and molecular wires revealed by their electronic conductances”. Viernes 13 de diciembre

Richard Korytar de la Charles University.Department of Condensed Matter Physics de la República Checa ofrecerá la conferencia titulada: “Quantum size-effects in atomic chains and molecular wires revealed by their electronic conductances”.

La conferencia tendrá lugar el viernes 13 de diciembre de 2019 en el Aula 3 de la Facultad de Ciencias de la Universidad de Zaragoza (frente a la oficina de administración del ICMA).

Resumen de la conferencia:

The ability to measure electronic conductance of single atoms and molecules is one of the most fascinating advances in physics and chemistry [1]. In my talk I will consider short linear chains of single-atom or molecular devices, manifesting quantum size-effects. Theoretically, one of the simplest examples of a quantum size-effect is the particle-in-a-box problem. When a particle bounces off two potential wells, the energy spectrum is quantized and the gaps scale with the box's length. I will demonstrate how this effect manifests itself in the conductance of linear oligoacenes, molecular chains whose basic unit is a benzene ring. Deeper understanding of quantum size-effects involves two limits: the infinite limit, represented by the band-structure, and the single unit (atom). For linear oligoacenes, I show that their specific band-structure implies unexpected incommensurate oscillations of the gap with length [2]. In the second part of the talk I will consider chains of magnetic atoms, which display so called Kondo effect when adsorbed on the surface of a metal [3]. Size effects in these chains offer a new perspective on the emergent heavy-fermion physics.

References:

[1] F. Evers et al.,arXiv:1906.10449 [cond-mat.mes-hall] (2019)

[2] T. Yelin, R. Korytár et al., Nature Materials, doi:10.1038/nmat4552 (2016)

[3] M. Moro-Lagares, R. Korytár, Nature Communications, 10:2211 (2019)

Cartel

 

AI

Noviembre 2022

L M M J V S D
31
 
1
 
2
 
3
 
4
 
5
 
6
 
7
 
8
 
9
 
10
 
11
 
12
 
13
 
14
 
15
 
16
 
17
 
18
 
19
 
20
 
21
 
22
 
23
 
24
 
25
 
26
 
27
 
28
 
29
 
30
 
1
 
2
 
3
 
4